

$u_{\mu} \rightarrow \nu_{e}$ MC Studies

Brett Viren

bv@bnl.gov

Physics Department
Brookhaven National Lab

Talk Outline

- 1. First stab at $\nu_{\mu} \rightarrow \nu_{e}$ reduction using Roy's "Standard" Reconstruction (SR).
- 2. Trigger Efficiency Study

π Shower Efficiency by S. Boyd

- Improved π shower efficiency (this tuning used here).
- Data/MC discrepancy (Data more efficient).

Application of SR to $\nu_{\mu} \rightarrow \nu_{e}$

MC Samples and procedure:

- Look at ν_e CC QE, NC and ν_μ CC interactions.
- **9** 25K LE beam events with **100%** $\nu_{\mu} \rightarrow \nu_{e}$. Used for ν_{e} CC QE and NC interactions.
- **9** 25K LE beam events w/out oscillation. Used for ν_{μ} CC interactions.
- Production reconstruction job + SR shower algorithms.
- Qtot spectra and efficiencies.

Reminder of the energy range of interest

 u_{μ} disappearance node at SK point,

 $\Delta m_{32}^2 = 2.5 \times 10^{-3} \; \mathrm{eV^2}$, is at \sim 1.5 GeV.

The 1-2 GeV bin corresponds to \sim 100-600 PE.

Raw PE Spectrum

Green lines contain the 1-2 GeV region

Shower and Track Multiplicity

 $\sim \frac{1}{4}~\nu_e$ CCQEs have no showers found. Majority of ν_e CCQEs have one track found.

Track Length for 1 track events

Cut: single track events with track length > 1m.

Shower Multiplicity for 0 track events

Shower multiplicity, no tracks

Require: events have 1 shower.

Simple Cuts

Require:

- 1. Fiducial: $10 \leq \text{plane} \leq 464$, $\rho_{vtx} \leq 3.5m$
- 2. 1 track events: length \leq 1 m.
- 3. 1 reconstructed shower.

Next, resulting spectra and efficiencies for ν_e CC QE, NC and ν_μ CC interactions.

Effects of cuts on ν_e CC QE spectrum

Spectrum, Nue CC QE

Effects of cuts on NC spectrum

Effects of cuts on ν_{μ} CC spectrum

Spectrum, Numu CC

Effects of cuts on ν_e CC QE efficiency

Efficiency, Nue CC QE

Effects of cuts on NC efficiency

Effects of cuts on ν_{μ} CC efficiency

Trigger efficiency study

- Trigger as explained by Geoff:
 - Local VARC trigger: 2/N PMTs with dynode > 1/3 PE. N=24-36.
 - Time order PMT pixels in triggered VARCS. Gap of 156.25 ns splits snarls.
 - 4 hit out of 5 consecutive planes.
- Simulated this in the offline.
- Applied to the 25K 100% $\nu_{\mu} \rightarrow \nu_{e}$ MC sample.
- Looked at lost events and lost energy for ν_e CC QE and NC.

ν_e CC QE event loss

About $\sim 0.5\%$ vertices in last plane. \sim 1% loss due to trigge fit Viren, BNL - MINOS Collab. Meeting, March, 2003 – p.18/23

u_e CC QE charge loss

- No events with > 1% charge loss due to 1/3 PE cut.
- 1% events loose more than 1% of their energy due to local VARC trigger.

NC event loss

NC charge loss

0.88

0.9

0.92

0.94

0.96

Triggered PEs / Thresholded PEs

- Negligible events loose more than 1% due to 1/3 PE cut.
- 3% loose more than 1% due to local VARC trigger.

Conclusions

- SR finds no showers in $\sim \frac{1}{4} \ \nu_e$ CC QE, mostly in the low part of the 1-2 GeV bin.
- Requiring exactly one shower reduces background and signal alike.
 Improvements in SR shower finding will bring the need for other reductions.
- Irack fits provide strong rejection for ν_{μ} CC above \sim 2 GeV region (1 GeV used in NuMI 714).
- Efficiencies in region of interest:
 - ν_e CC QE: 10-60%
 - NC: 10-20%
 - ν_{μ} CC: few %
- **Proof** Trigger efficiency okay for $\nu_{\mu} \rightarrow \nu_{e}$.

Possible Future Efforts

- Improve on SR shower finder, deal with higher resulting background.
- New shower reconstruction methods (AtNuReco).
- "Non-reconstruction" methods:
 - Global event topology statistics
 - Neural net event classification (Athens)